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LETTER TO THE EDITOR 

The thermodynamic limit on Bethe lattices? 

Fulvio PeruggiS 
Istituto di Fisica Teorica, Mostra d’oltremare, pad 19, 80125 Napoli, Italy 

Received 29 September 1983 

Abstract. We emphasise the fact that, to obtain the exact solution of Hamiltonian models 
on Bethe lattices, one can apply explicitly the formal method of rigorous statistical 
mechanics, i.e. the thermodynamic limit of probability measures. This approach solves the 
well known dichotomy between clashing alternative solutions, and provides a very simple 
analytic solution for a large class of Hamiltonian models. 

Bethe lattices, i.e. infinite connected trees whose sites have the same coordination 
number (for graph theory terminology we refer to Essam and Fisher (1970)), deserve 
some interest in statistical mechanics owing to their thin structure. For every m-step 
Markov Hamiltonian model (see e.g. Sinai (1982); also see Feller (1968) and Lokve 
(1977)) only one bundle of correlation paths exists around the unique walk between 
any pair of sites. This means that, in principle, all correlation functions can be calculated 
exactly, thus solving the model under investigation. Due to this property, certain 
Hamiltonian models (mostly one-step Markov, as the Ising model with only nearest- 
neighbour interactions and external fields) have been considered in detail on this kind 
of lattice (Kurata et a1 1953, Domb 1960, Woodbury 1967, Runnels 1967, Obokata 
and Oguchi 1968, Wheeler and Widom 1970, Eggarter 1974, von Heimburg and 
Thomas 1974, Matsuda 1974, Katsura and Takizawa 1974, Katsura 1975, Muller- 
Hartmann and Zittartz 1974,1975, Muller-Hartmann 1977, Falk 1975, Coniglio 1975, 
1976, Muto and Oguchi 1976, Wang and Wu 1976, Moraal 1976, 1978, 1981, 
1982a, b, c, d, e, Morita and Horiguchi 1981, Thompson 1982, Baumgartel and Muller- 
Hartmann 1982)6. It is known (see e.g. Baxter 1982) that distinct solutions can be 
obtained for the same model when the thermodynamic limit on increasing sequences 
of finite trees, whose union is the Bethe lattice, is taken. Roughly speaking, the 
differences arise according to whether, in the calculation of extensive functions, one 
looks for (i) the properties of the complete trees, or (ii) only those of their interior. 
The so-called Cayley tree solutions (i) use the thermodynamic limit of the free energy 
and take into account the non-negligible surface effects which arise in the process. 
The so-called Bethe lattice solutions (ii) use the partition function of finite systems 
(but do not consider at all surface effects), local magnetisations and uniformity require- 
ments, and subsequently take the thermodynamic limit. We emphasise the fact that 
both approaches (i) and (ii) are formally unsatisfactory. It is well known that, on 

t Supported by MPI and CNR. 
’$ Gruppo Nazionale di Struttura della Materia. 
5 This set of references is not exhaustive. 
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d-dimensional hypercubic lattices and in other systems, the correct free energy limits 
are obtained when van Hove's convergence condition holds (Ruelle 1969,1978, Huang 
1963). The fact that no increasing sequence of trees tends to the Bethe lattice in the 
sense of van Hove (see below) does not imply that we are bound to accept the results 
of type (i) methods, nor that they are exact. On the other hand, type (ii) methods do 
not give formal justifications for the deletion of surface effects and sometimes reduce 
to applications of the Bethe-Peierls cluster approximation (Bethe 1935, Peierls 1936), 
although no rigorous proof was given yet that it is exact on Bethe lattices, except for 
some consistency checks given in special cases (Kurata er a1 1953, Domb 1960, Katsura 
and Takizawa 1974, Wang and Wu 1976). However, it is known that the canonical 
approach of the thermodynamic formalism (Ruelle 1978), i.e. the thermodynamic limit 
of probability measures (PM),  is totally unaffected by the properties of the sequences 
used and the lattice considered. It is our aim to remark that, owing to the structure 
of the Bethe lattice, the PM approach can be applied not only formally, but explicitly. 
This allows us to verify the exactness of type (i) and (ii) results, and also provides the 
complete analytical solution of a large class of Hamiltonian models, which include as 
very special cases the Ising model, the Potts model, the vector (or planar) Potts model, 
the Ashkin-Teller model, the Z ( q )  (or clock) model, and all the previous models with 
annealed site-dilution. In the following we describe briefly the essential properties of 
the PM approach; then we specialise it to Bethe lattices and prove that type (i) results 
do not converge to the correct limits. Finally, we give a summary of results concerning 
the solution of Hamiltonian models. 

Let us consider a discrete system (V, 0) formed by the countable set V of points, 
and the finite set Q = { 1,2 ,  . . . , q }  of states that each point may assume. Each collection 
{A, ,  A 2 , .  . . , A4} of q finite subsets of V characterises one local event (with basis 
A UrcO A,) on the system, i.e. the set of all the configurations of V such that every 
point i E A, is in the state r E Q. The set of all local events on (V, Q) is a semi-ring 
R (for results of abstract measure theory we refer to the book by Zaanen (1967)), 
i.e. the simplest collection of sets where probability measures describing the system 
can be defined. Generalised local and non-local events also can be considered, since 
any probability measure p on R is extendible to the a-field F 3 R of all p-measurable 
events. An interaction I in the system is a properly normed real function defined on 
the elements of R, which is zero on the global event. We suppose that V is a metric 
space and I (  g )  = 0 for every non-void 8 E R whose basis contains at least two points 
at distance larger than a fixed number rn > 0. Given a finite subset V, of V, we call 
the internal boundary AVo (external boundary avo) of V, the set of all the points in 
V, ( V - V,) such that their distance from at least one point in V - V, ( V,) is less than 
or equal to m. Given two local events gvo, gav,, respectively with basis V, and dV,, 
the Hamiltonian on V, (relative to the 'configuration' gV0 of V,) is defined as 

while the interface Hamiltonian on A V, (relative to 8, and the 'boundary condition' 
GP,,) is defined as 

-PxAvo(gvo; $avo) E c I (  @3* (2) 
$ER:%? iPvon %"";%a &o;i8z%,vo 

The (conditional) Gibbs probability measure of 8, (given that %avo is an event with 
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probability 1 )  is obtained in the conventional way as 

The knowledge of (3) for every gv0 (and fixed Eav,,) is sufficient to extend po to the 
semi-ring Ro of all local events with basis equal to or included in V,. Let { V,}:=, be 
a sequence of finite subsets of V (ordered by inclusion) such that U:=, V,, = V; let 
p, be a probability measure on R,; and let I be an index such that A c  V,  for every 
n > 1. It has been proved (Ruelle 1978) that one can choose a subsequence { V,8}~ ,s l  
of {V,}y=, such that the limit 

exists for every R, and defines the probability measure p on R,  i.e. a thermo- 
dynamic limit of the p,’s. If every p, is a Gibbs probability measure (defined as 
previously described) on R,, distinct limits may be obtained depending on the selected 
subsequence of boundary conditions (this would be the typical case at low temperatures, 
if two or more ordered phases arise in the system). We denote YC, the closed convex 
hull of the set of all the limits defined through (3) and (4): the thermodynamic limits 
of the (non-conditional) probability measures obtained by deletion of the interface 
Hamiltonian in (3) also belong to XI (Ruelle 1978). 

Remark that no special hypotheses were made about the properties of the sequences 
{ V,}:=,. From the physical point of view this is justified by the intensive character of 
local events, whose distance from the boundaries of V,, becomes larger and larger in 
the thermodynamic limit. On the contrary, an extensive function such as the free 
energy receives contributions from AV,, for every n, so its limit may depend on the 
choice of the sequence. Van Hove’s convergence condition in the present terminology 
can be written as 

lim / A  V, I /  I V, I = 0 
n-a )  

(here 1x1 is the number of elements of the finite set X). The sequences { V,}z=l which 
satisfy relation ( 5 )  give correct results for the entropy and free energy limits, while 
the others give results which do not agree with those of the PM approach. This is 
established (Ruelle 1978) for hypercubic lattices: we will show that the same is true 
for Bethe lattices. 

Let L be a Bethe lattice with coordination number a+ 1 ,  and let us make the 
following hypotheses: (a) the point set V is the set of sites of L = (V,  E ) ;  (b) the 
distance between two sites is defined as the number of bonds in the walk connecting 
them; (c) the maximum interaction range is m = 1.  Then it is easy to see that for every 
increasing sequence { T , } ~ = ,  of finite trees tending to L we have 

lim ~ A V , , ~ / ~ V , ~ = ( a - l ) / a  
n-a? 

i.e. condition ( 5 )  does not hold. There is another trivial but important topological 
property of { T,,}:=,. Let us denote by +i( G )  the local number of bonds per site relative 
to the site i of a locally finite graph G, i.e. half the coordination number of i in G. 
The mean number of bonds per site + ( G )  is defined as the average of Gi(G) on G. 
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Since $,(L)  is the same for every site of the Bethe lattice, we obtain 

= $i(L) =(a+ 1)/2 (7) 

$(Tn)=IVnI-l (Clr(Tn)=l+l/IVnI* (8) 

while on T, we find 

lev, 

Therefore the asymptotic mean topological properties of { T,,}z=l do not recover those 
of L, since 

lim $( T,,) = 1 # $(L) .  (9) 
n-oo 

Now, to  see that relation (9) implies that type (i) methods do not agree with the PM 

approach, let us return to the consequences of hypotheses (a)-(c). They imply that 
the sum in (1) contains only terms of the type I( giV, fl 8,") and I (  giV,) ,  where ( i j )  E E 
and 8 k Y k  is the local event which attributes the state vk E Q to the site k E V. Therefore, 
the Hamiltonian (1) can be written (for every finite V,c V) in the most familiar form: 

where E,c E is the set of all the bonds whose terminal sites belong to V,; the values 
of vK are fixed by the condition 8 k v k  3 8,; and K and H are real functions of their 
arguments. Relation (10) implies that every Gibbs probability measure p, on R, is 
one-step Markov, as well as any thermodynamic limit p on R. It follows that every 
local event can be seen as a simple branching process (see e.g. Feller (1968) and Lokve 
(1977)), so that its probability can be expressed in terms of the measures of local 
events having one site or two adjacent sites as basis ('site' and 'bond' probabilities): 

Here T A  = ( VA, EA) c L is the smallest tree containing A ;  A = VA - A ;  h E VA is the 
source of the process, which propagates along the bonds 1ij)E EA oriented along the 
running direction; it is understood that vk assumes the value fixed by %A (%A) for 
k E A ( k  E A); and, following the definition of conditional probabilities, p (  8,vJl 8rv2) = 
p (  %,, fl c&IVJ)/p( 8,",). Direct counting of the possible configurations of the system, 
and use of ( l l ) ,  give the entropy on T,, = (V,,, E,) (Peruggi 1983b): 

where k is the Boltzmann constant, ul + 1 is the coordination number of the site i in 
T,, and T( a )  = a In a. The internal energy on T, is easily obtained by (10): 

4 4 

P Q T n  =-  C C K(y)rspn(girn 8 , s ) -  C 1 Hirpn(grr)* (13) 

P ~ T ,  = P%!T,- k-'STn. (14) 

( r / j s € ,  r , s = l  revn r = l  

The free energy on T,, is obviously given by 

Dividing (12) and (13) by lV,,/= IE,I/$(T,), and taking the thermodynamic limit, we 
obtain bond terms formed by the spatial average on E of 2 ( p ( g l r  n 8,s)) and 
K(i,)rsp( 8,, fl 8,,,), respectively, times the factor $( T,,), which does not converge 
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to the correct value +(L).  We deduce that the topological discrepancy (9) affects the 
thermodynamic limits of the entropy, internal energy, and free energy as an incorrect 
counting of bond contributions with respect to site contributions?. This explains the 
unusual physical properties of type (i) solutions, which could be attributed, at most, 
to a very big finite tree, but actually have no relation with Hamiltonian models on 
Bethe lattices. 

Let us consider now the explicit solution of Hamiltonian modelst. We add the 
following hypothesis to (a)-(c): (d) the interaction I is rotationally and one-step 
translationally invariant on L9. Thus relations (lo)-( 14) still hold, but we also suppose 
that K(J),s = K,, for every ( i j )  E E, and Hi, = H, for every i E V. One can prove that 
every Gibbs probability measure F, on R, is completely characterised by certain 
parameters { { A , ( i ;  r ) } y = l } i E  v,. In fact all site and bond probabilities may be calculated 
by using these parameters, and univocally define p, by means of (11).  We remark 
that, by definition, all the A's are real positive, and A,,( i ;  1)  = 1 for every i E V,. The 
parameters { { A , ( i ;  r)}?=2}ieav, are fixed by the boundary condition gaVn ; all the others 
are obtained through hierarchical or recursive relations (depending on gaVn and the 
structure of T,). The latter can be written in the form 

In the thermodynamic limit these iterative equations reach fixed points or two-step 
cyclic points, which characterise rotationally and one- or two-step translationally 
invariant probability measures on R, i.e. extremal points of X I  which describe pure 
phases[\. As regards the hierarchical relations, they give rise to the same probability 
measures, or to their mixtures (=phase mixing), i.e. non-extrema1 points of XI.  Let 
us consider the partition of V in two subsets V', V" such that the sites adjacent to 
every i E V" belong to V y ;  x, y =e ,  o or 0, e. At a two-step cyclic point characterised 
by the parameters { A e ( r ) ,  A o ( r ) } , s Q  we find 

where i E V", (ij) E E, r E Q, s E Q, and x, y =e ,  o or 0, e. At a fixed point we have 
A ' ( r )  = A " ( r )  for every r E  Q, and sublattice dependence disappears. The (per site) 
free energy p S  on L, relative to pure phases, is found by taking the thermodynamic 

+ Note that this holds for any thermodynamic limit p. Then the suggestion by Peruggi et a/ (1983a), that 
type (i) results could correspond to  probability measures which are not translationally invariant on L, is 
erroneous. 
$ The proofs of all the following results will be found in Peruggi (1983a. b). 
5 The most general case of a rotationally and two-step translationally invariant interaction is treated in full 
detail by Peruggi (1983a, b). Note that we do not refer to rotations and translations of a Euclidean space 
where a realisation of L is drawn, but to isomorphisms of the Bethe lattice onto itself, defined by means 
of lexicographic orderings of its sites. 

1 1  As a matter of fact, see the solution of the Potts model by Peruggi et al (1983a). Also remark that, up 
to now, there is no general proof that relations (15) are piecewise contracting (PC), i.e. that every seed 
goes into a fixed or two-step cyclic point. I f  the PC property does not hold for a certain model, there could 
also be extremal points of X ,  related to pure states which are not invariant under rotations and/or translations 
of L. However: (A)  the PC property holds for the ferromagnetic and antiferromagnetic Ising and Potts 
models; (B) Brouwer's theorem (see e.g. Collatz 1966) ensures that relations (15) always admit at least 
one fixed or two-step cyclic point; (C) numerical evidence strongly supports the PC property. 
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limit of (12) and (13), provided relations (16) and the heuristic rule limnem +( T,) = 
( a + 1 ) / 2  are used. To see that the result is correct, it is enough to perform simple 
checks: e.g. to verify that a(p.!F)/dH, =,u(gi,), r E  Q, as was done by Peruggi et a1 
(1983a). A rigorous limit procedure may be introduced, too, which gives the same 
expression for p.!F. 

Finally, let us remark that it is easy to see that the Bethe-Peierls approximation 
on standard lattices gives the same site and bond probabilities as (16) (thus justifying 
the name ‘Bethe lattices’), and that there is general agreement between our method 
and type (ii) results. In spite of this equivalence the PM approach has two relevant 
advantages. It gives directly the free energy, which has never been calculated with 
type (ii) methods except for one special case (Baxter 1982) where an integration 
procedure, starting from the equation of state, is used. Furthermore, using (1 l ) ,  one 
can calculate the probability measure of any event on the Bethe lattice, so that any 
problem on L can be solved, not only the study of thermodynamic properties. As a 
matter of fact, we have also found the complete analytic solution of polychromatic 
and d93 correlated-site/random-bond percolation problems (Peruggi 1983b, Peruggi 
et a1 1983b). 

To summarise, we have emphasised that the thermodynamic limit of probability 
measures in the canonical approach to the solution of Hamiltonian models on any 
discrete state countable lattice. This PM approach has allowed us to clarify the well 
known dichotomy concerning the solution of Hamiltonian models on Bethe lattices. 
The methods (i), which use the thermodynamic limit of the free energy, generate 
results not related to the systems under study. Other approaches (ii) give exact results, 
although they are criticisable from the formal point of view. We sketched the PM 

approach, and pointed out that, besides its formal coherence, it gives easily complete 
information about a large class of Hamiltonian models on Bethe lattices. 

The author is very indebted to A Coniglio, B Preziosi, G Monroy and F di Liberto 
for many interesting and useful discussions. 

References 

Baumgartel H G and Muller-Hartmann E 1982 Z. Phys. B 46 227 
Baxter R J 1982 Exactly solved models in statistical mechanics (New York: Academic) 
Bethe H A 1935 Proc. R .  Soc. A 150 122 
Collatz L 1966 Functional analysis and numerical mathematics (New York: Academic) 
Coniglio A 1975 J.  Phys. A: Math. Gen. 8 1773 
- 1976 Phys. Rev. B 13 2194 
Domb C 1960 Adv.  Phys. 9 149 
Eggarter T P 1974 Phys. Rev. B 9 2989 
Essam J W and Fisher M E 1970 Rev. Mod. Phys. 42 272 
Falk H 1975 Phys. Rev. B 12 5184 
Feller W 1968 An introduction to probability theory and its applications (New York: Wiley) vol 1-2 
von Heimburg J and Thomas H 1974 J.  Phys. C: Solid Stare Phys. 7 3433 
Huang K 1963 Statistical mechanics (New York: Wiley) 
Katsura S 1975 J.  Phys. A: Math. Gen. 8 252 
Katsura S and Takizawa M 1974 Prog. Theor. Phys. 51 82 
Kurata M, Kikuchi R and Watari T 1953 J.  Chem. Phys. 21 434 
Loeve M 1977 Probability theory (New York: Springer) vol 1-2 
Matsuda M 1974 Prog. Theor. Phys. 51 1053 



Letter to the Editor L719 

Moraal H 1976 Physica 85A 457 
- 1978 Physica 92A 305 
- 1981 Physica 105A 472 
- 1982a Physica l l 3 A  44 
- 1982b Physica 113A 67 
- 1982c J. Phys. C: Solid State Phys. 15 L55 
- 1982d Phys. Lett. 89A 310 
- 1982e Z.  Phys. B 45 237 
Morita T and Horiguchi T 1981 J. Stat. Phys. 26 665 
Muller-Hartmann E 1977 2. Phys. B 27 61 
Muller-Hartmann E and Zittartz J 1974 Phys. Rev. Lett. 33 893 
- 1975 Z. Phys. B 22 59 
Muto S and Oguchi T 1976 Prog. Theor. Phys. 55 81 
Obokata T and Oguchi T 1968 J.  Phys. Soc. Japan 25 322 
Peierls R 1936 Proc. Camb. Phil. Soc. A 32 471 
Peruggi F 1983a Probability measures and Hamiltonian models on Bethe lattices: I. Properties and construction 

- 1983b Probability measures and Hamiltonian models on Bethe lattices: I!. The solution of thermal and 

Peruggi F, di Liberto F and Monroy G 1983a J .  Phys. A :  Math. Gen. 16 811 
- 1983b Some AB percolation problems in the antiferromagnetic Ports model in press Physica A 
- 1983c The Potts model on Bethe lattices: II. Special topics to be published 
- 1983d The Potts model on Bethe lattices: I l l .  The vector model in preparation 
Ruelle D 1969 Statistical mechanics (New York: Benjamin) 
- 1978 Thermodynamic formalism (Reading: Addison-Wesley) Encyclopcdia of mathematics and its 

Runnels L K 1967 J. Math. Phys. 8 2081 
Sinai Y G 1982 Theory of phase transitions: rigorous results (Oxford: Pergamon) 
Thompson C 1982 J. Stat. Phys. 27 441 
Wang Y K and Wu F Y 1976 J .  Phys. A :  Math. Gen. 9 593 
Wheeler J C and Widom B 1970 J.  Chem. Phys. 52 5334 
Woodbury J r  G W 1967 J.  Chem. Phys. 47 270 
Zaanen A C 1967 Integration (Amsterdam: North-Holland) 

of MRTprobability measures to be published 

configurational problems to be published 

applications vol 5 


